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In this  work  we  present  a study  for assessing  and  comparing  the fidelity  of biopsy  and  cytology  images
captured  with  two  different  devices,  that is optical  microscopes  and  scanners,  at  40× magnification  in
bright  field.  The  devices  use  different  ways  to magnify  images.  Microscopes  use  a  set of  lenses  while
scanners  capture  light  through  arrays  of micro-photoreceptors.  The  objective  is  to carry  out  a quantita-
tive  evaluation  to discern  which  of  the  two  devices  provides  better  image  quality  in terms  of  contrast,
eywords:
istological image processing
icroscopic image quality
hole slide imaging (WSI)

sychophysical tests
bjective Perceptual Contrast

colour  and  stain.  Since  there  is  no  unanimous  consensus  on quality  metrics,  we will make  use  of  both
an objective  metric  based  on  perceptual  features,  together  with a  subjective  psychophysical  test  as  the
International  Telecommunications  Union  (ITU)  recommends  in  ITU-R  BT.500  for  such  type  of  tests.  Both
techniques  indicate  a slight  preference  for the  scanner  over  the  microscope  in  terms  of better  image
quality,  considering  defocus  as the  main  problem  followed  by  colour  distortions.  However,  the  image
quality  of both  devices  is  suitable  for clinical,  educational  and  research  purposes.
. Introduction

Advances in new technologies for complete slide digitization
n pathology have led to a wide spectrum of technological solu-
ions for whole-slide scanning. They may  be classified into two

ain categories, motorized microscopes and scanners (García-Rojo
t al., 2006). The first one is made of a set of lenses which properly
ligned magnify the light reflected by the sample into the eye or
nother light detector. For focusing in the proper focal plane, the
lice is often held by a motorized platform controlled via software.
he second one captures the light reflected by a glass slice with
he sample inside through a co-aligned array of photodetectors.

 comparison of 31 commercially available digital slide systems
n pathology, describing the most relevant characteristics of the
canning devices, was carried out by the authors in García-Rojo
t al. (2006),  where most of the systems evaluated allow a high-
esolution digitization of the whole slide. Fig. 1 shows an example
f a tissue sample acquired with both devices.
Table 1 summarizes the main features of these devices. Motor-
zed microscopes are more flexible and customizable than the
canners. They have the same functionality as traditional ones, but

∗ Corresponding author.
E-mail address: gloria.bueno@uclm.es (G. Bueno).

968-4328/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.micron.2011.09.010
© 2011  Elsevier  Ltd.  All  rights  reserved.

featuring motorized components. Thus they have a wide range of
objective lenses, that is 2.5×,  5×, 10×,  20×,  40×,  and 60× and they
are able to digitize in bright and fluorescence field. This may  help
different diagnostic process. However, the digitization speed at 40×
(mm2/s) is lower than in scanners.

The previously cited study García-Rojo et al. (2006) concludes
that the image quality of current virtual microscopy systems is suit-
able for clinical, educational and research purposes. However, the
study lacked a quantitative comparison between the image quality
provided by the motorized microscopes and the scanners. This arti-
cle provides this quantitative assessment. Thus, the image quality
is evaluated in terms of focusing, contrast, stain, colour, bright-
ness, overexposure and sharpness for biopsies and cytology tissue
samples digitized at 40× bright field.

The first question that arises is what should be the criterion
for assessing the fidelity of both types of images. The first obvi-
ous answer is: a good image should preserve those features which
facilitate the pathological assessment of the tissues, i.e. whether the
tissue is diseased or not. From the point of view of image process-
ing, this criteria is translated into preservation of features such as
matching colour, high contrast, homogeneous luminance, contour

or texture.

During the last decades many image quality metrics have
been proposed in the literature. Initially the metrics only consid-
ered mathematical discrepancies with a so-called reference image.

dx.doi.org/10.1016/j.micron.2011.09.010
http://www.sciencedirect.com/science/journal/09684328
http://www.elsevier.com/locate/micron
mailto:gloria.bueno@uclm.es
dx.doi.org/10.1016/j.micron.2011.09.010
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Fig. 1. Example of two captured histological images of size 1800 × 1800 pixels. (

mong these metrics, also named objective metrics, one can find a
imple sum of cumulative errors such as the Peak Signal to Noise
atio (PSNR) and Mean Square Error (MSE) (González and Wintz,
987) or more complex measures such as Structural SIMilarity
SSIM) (Wang and Bovik, 2002), which correlates information of
uminance and contrast. These objective metrics are still an impor-
ant tool for quality assessment of images, however they can suffer
otable bias in terms of the overall final perceived image quality.
or such reason many efforts have been devoted to developing per-
eptual metrics which involve an increasing number of stages of the
omplex Human Visual System (HVS).

It is beyond the scope of this paper to make a thorough descrip-
ion of the HVS, but the main ideas will be addressed here. The

isual pathways are composed of multiple stages, from the retinal
hotoreceptors to the upper neuronal layers, which are highly non-

inear (Wurtz and Kandle, 2000). At the first stages the neuronal
esponse acts like a non-linear normalization of the dynamic range

able 1
ain characteristics of whole slide scanning systems.

Scanners Microscopes

CCD RGB Yes Yes
CCD monochromatic No Yes
CMOS sizea 3 × 2098 pixels 2048 × 2048 pixels
Sensor pixel sizea (�m) 14 × 14 7.4 × 7.4
Resolution (�m/pixel)

20× objective 0.47 0.37
40×  objective 0.23 0.185

Slide feeder up to 160 (BCR)+ up to 300 (BCR)+

2.5× objective lens No Yes
10×  objective lens No Yes
20×  objective lens Yes Yes
40×  objective lens Yes Yes
60×  objective lens No Yes
Bright field digitalization Yes Yes
Fluorescence field digitalization No Yes
Digitization speed 40× (mm2/s) 0.35–0.66 0.05–0.18
Digitization time at 40×

Area 10 × 10 mm 4–60 min  11–35 min
Area 15 × 15 mm 9–150 min  25–80 min
Whole area 25 × 50 mm 40–720 min  107–448 min

JPEG compression method Yes Yes
JPEG2000 compression method No Yes
Compressed file size 40× 1.5 G–2 GB 1.5 G–2 GB

BCR)+ = includes a bar code reader.
a The devices tested in this paper.
nner. (b) Microscope. Note differences could be masked by low-quality printing.

of the luminance. Other upper cortical areas present spatial con-
nections for neuronal excitation and inhibition mechanisms. These
intrinsic non-linearities provoke that the final perceived distortion
of a given feature between two  images depends not only on the
mathematical difference but also other contextual factors like local
luminance, local contrast, texture information and other contextual
information abstracted by the highest layers of the HVS. The state
of the art in perceptual image metrics considers mainly the early
stages, i.e. visual areas V1 and partially V2. This is due to its com-
plexity on the one hand and on the other side due to the still unclear
neuronal mechanisms of the highest stages which has to do with
abstraction and memory manipulation of the visual information.
However these perceptual metrics have shown more correlation
with the overall perceived image quality than those purely statis-
tical metrics.

Several authors have incorporated perceptual aspects to objec-
tive metrics in a bottom-top architecture, but only a few perceptual
metrics have properly defined modules of the early HVS. The two
most relevant proposals in this respect are the Visual Discrimina-
tion Model proposed by Lubin (1993) and the Visible Difference
Predictor proposed by Daly (1993).  In this study we consider Daly’s
contrast measure because it provided better results in previous
studies by the authors Gallego (2006), Chalmers et al. (2000).  It
also operates in the spatial domain and visual discrepancies can be
easily observed (Li et al., 2000). However, such a metric has been
designed for reference image-problems and in this framework it is
not available, therefore we will operate with its notion of contrast.
In perceptual quality the contrast is the key concept because visual
information is perceived as difference of luminance instead of abso-
lute level. We  will refer to Objective Perceptual Contrast (OPC) as
the output of the contrast modules of this metric for measuring
perceptual discrepancies of local contrast between microscopy and
scanned pairs of images.

The ‘no-reference’ problem is challenging and frequent in real
scenarios. Several no-reference metrics have been proposed in the
literature, see Ferzli and Karam (2009) for a review. We evaluate
here additionally a non-reference metric named Cumulative Prob-
ability of Blur Detection (CPBD). It was  proposed by the previously
cited authors using a top-bottom architecture which incorporates

perceptual models of blurring/contrast adjusted to the evaluation
of a training database through psychophysical experiments.

In spite of the utility of these objective metrics for evaluat-
ing image quality, none of these metrics, neither statistical nor
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Fig. 2. Block diagram of the modules of the Objective Perceptual Contrast (OPC). First, the image is decomposed in a luminance channel and three colour channels (red,
blue  and green), then an intensity adaptation, contrast sensibility function and space-frequency decomposition is performed where the local contrast is finally calculated.
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ackground areas are discarded by using a region of interest mask calculated in 

hresholds for all bands and finally they are summed for obtaining the OPC value fo
he  reader is referred to the web  version of the article.)

erceptual, is a universally accepted metric for image quality.
herefore we will make use of subjective techniques for assessing
isual discrepancies. In particular psychophysical tests (ITU, 2000)
rovide a complete perceived quality which involves the overall
VS, from the early to the complex and later neuronal stages. How-
ver, psychophysical tests have their own drawback since they
re also subject to scoring bias depending on the type of instruc-
ions given to the observers, the order of the evaluated images,
uminance conditions or even the inherent visual adaptation to dis-
ortions. Another associated problem with these type of tests is the
osing of spatial or temporal information where the discrepancies
ake place because distortion is scored globally.

Since each of the techniques presented above has its own use-
ul properties but also its own limitations for the purpose at hand,
e present here the evaluation of microscope/scanner images
ith the three techniques as necessarily complementary studies.

 description of the materials used for this work can be found
n Section 2. Section 3 presents the notion and experiments with
PC. Section 4 shows the results for CPBD and Section 5 presents
sychophysical evaluation. Finally, conclusions are drawn in
ection 6.

. Material preparation

Tissue samples from biopsies and cytologies, prepared with dif-
erent stains, were digitalized with a motorized microscope ALIAS
I and with a scanner Aperio Scanscope XT at 40× with no com-
ression. The samples were extracted from 8 breast biopsies and

 prostate biopsies, with the diagnosis of carcinoma. Specimens
xed in 4% buffered formalin were selected to prepare 4 mm  thick-
ess histological slides deparaffinized in xylene. Both conventional
aematoxylin–eosin stain and immunohistochemical (IHQ) tech-
iques were performed. Immunohistochemical detection in 4 nm
ection of paraffin embedded prostate and breast biopsies was
erformed using monoclonal mouse anti-human Ki-67 antigen
clone MIB-1, DAKO, Denmark) in 12 breast slides, and polyclonal
abbit anti-human antibodies for Prostate-Specific Antigen, PSA
DAKO, Denmark) in 16 prostate slides. The immunocytochem-
cal detection in cytology from pleural effusions was  performed
sing monoclonal mouse anti-human calretinin (clone DAK-Calret
, DAKO, Denmark) in 2 slides, and monoclonal mouse anti-thyroid
ranscription factor, TTF-1 (clone 8G7G3/1, DAKO, Denmark) in 6

lides. In all tissue cases, target retrieval was performed with a pre-
reatment module for tissue specimens, PT Link (DAKO, Denmark).
eady to use primary antibodies were incubated for 1 h at room
emperature, the detection was performed using the EnVision
minance channel. The local contrast is used for calculating the visibility masking
 colour channel. (For interpretation of the references to color in this figure legend,

FLEX+(DAKO, Denmark) visualization system in an Autostainer Link
48 (DAKO, Denmark).

The autofocus algorithm used in the microscope uses three itera-
tions. The user provides three initial coordinates (Z0, Zmax, Zmin) and
the step is set to �Z  = �Zmax. The algorithm obtains a focus mea-
sure F0 at initial coordinate Z0. Then, the z-position of the stage is
incremented by �Z  stepwise until Fpos > Fpos+�Z in two consecutive
steps. The same procedure is done with the stage but decrement-
ing from Z0. This finally delimits a range where the best focused
z-position named Z1 is saved. From that point a second iteration is
performed with new initial coordinates (Z1, Z1+�Zmax , Z1−�Zmin

) and
a new step �Z  = �Zmax/2. The last iteration narrows even more the
search area, setting the initial coordinates to (Z2, Z2+�Zmax , Z2−�Zmin

)
and a more exigent step �Z  = �Zmax/8. The image corresponding
to the best in focus position in this last range is finally captured.
The Aperio Scanscope XT autofocus algorithm uses a pre-focus cal-
ibration where the best-focus lens-height is measured at a fixed
number of points on the slide. During scanning, the focus profile is
calculated using interpolation based upon Delaunay triangulation.

The images finally captured with the microscope and the scan-
ner were registered with an affine rigid registration to avoid
misinterpretation due to possible rotation and translations pro-
duced in the digitalization process (Thévenaz et al., 1998). Then
they were cropped in paired tiles of size 800 × 800 to speed up the
algorithm and to ensure the whole image is displayed entirely at
full resolution in the monitor for psychophysical tests and a number
of 34 random paired tiles were finally selected.

3. Quality evaluation through Objective Perceptual
Contrast (OPC)

The perceptual contrast measurement used for assessing the
quality of the images is made of several stages corresponding to
the responses of the early stages of the HVS. Some models of the
perceptual stages correlate better than others with psychophysi-
cal evaluation performed by real observers. Those modules which
delivered the best correlation (Gallego, 2006), which mainly follows
the implementation proposed by Daly (1993),  were employed here.
The modules, plotted in Fig. 2, are briefly described afterward.

3.1. Perceptual contrast modules
3.1.1. Colour decomposition
In the same way  as the perceptual metrics dedicated to measure

luminance distortions have complications to imitate the HVS, there
is not consensus between colour metrics. The majority of colour
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ig. 3. Cubic root luminance adaptation compared to other often used non-
inearities.

etrics propose a transformation of the RGB channels to a lumi-
ance channel and two decorrelated colour channels like S-CIELAB
hang and Wandell (1998) or l˛  ̌ Toet and Lucassen (2003).  In our
ase, due to the nature of the images at hand, which present clearly
wo main colours, brown (closely to red) and blue, we  decided to
ssess the quality of YCbCr transformation. The resulting evalu-
tion of the three channels could be joined in a single and global
easure, however we preferred to keep them independent to eval-

ate different possible distortions in different luminance/colour
hannels.

.1.2. Intensity adaptation
Intensity differences are dependent on local luminance. As the

eber–Fechner’s law describes, the more the local luminance is,
he more contrast is required for perceiving the same intensity dif-
erence. This behaviour is typically modeled as a non-linearity of
he luminance intensity. We  used a cubic-root exponential law for
hat, which is similar to Daly’s model Daly (1993),  see Fig. 3.
adapted(x, y) = i(x, y)1/3 (1)

The input image i should be normalized, adapted and then mul-
iplied by the maximum intensity level of the luminance displayed

ig. 4. Normalized contrast sensitivity function proposed by Daly for default values of res
here  the frequency decay and the anisotropy are the main features. (b) Central profile o
43 (2012) 334–343 337

by the monitors, which is often around 250 cd/m2. The variables x
and y are the cartesian image coordinates.

3.1.3. Contrast Sensitivity Function (CSF)
It has been already demonstrated in many vision research fields

that the HVS has less sensitivity to very high and very low fre-
quency signals (Wurtz and Kandle, 2000). The importance lays in
the sense that a certain distortion in a signal of very high or very
low frequency are less perceived than the same distortion in the
mid-frequency range. The CSF is multiplied in the Fourier domain
as follows:

iCSF (x, y) = F−1{F{iadapted(x, y)} · CSF(u, v)}, (2)

where F refers to the Fourier operator and u and v the cartesian fre-
quency coordinates. This can be seen as a frequency normalization
or equalization according to visual sensitivity of the stimuli accord-
ing to their frequency components. The higher the sensitivity in a
certain range, the more visible the stimuli is in that frequency range.
Another special feature of the HVS is anisotropy, which means that
horizontal and vertical stimuli are more visible than oblique stim-
uli for a same given intensity. This is reflected in the 2D Fourier
shape of the CSF. We finally adopted again the CSF proposed by Daly
(1993) modelled according to their physcophysical experiments
(see Fig. 4).

3.1.4. Space-frequency decomposition
The HVS in the area V1 is made of multiple neurons oriented to

detect explicit oriented and scaled features. This is often modeled
as a decomposition of the Fourier domain by means of filters tuned
in a certain frequency range. We  used Gabor filters because they
present high fidelity with the neuronal V1 cells response (Daugman,
1980). Let Gso be the filter of the scale s and the orientation o defined
in the polar Fourier domain (�, �) as:

Gso = exp

(
−1

2

(
� − �o

��

)2
)

exp

(
−1

2

(
� − �so

��

)2
)

, (3)
where �o and �so are the polar coordinates of the filter centers and
(�� , �� their variance. The tuning parameters are not in the scope
of this paper, but can be found in a publication of the same authors
(Fischer et al., 2007). We  used for this study a decomposition of 5

olution 32 pixel/cm and viewing distance 40 cm.  (a) 2D view of the Fourier domain
f the 2D view.
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ig. 5. Gabor filters used for space-frequency decomposition. (a) Profiles of the filt
c)  Same 4 scales and orientations in the Fourier domain.

cales and 4 orientations. A Fourier covering of such Gabor filters
an be seen in Fig. 5.

.1.5. Local contrast
Once the image is decomposed into normalized cortical chan-

els, each one is transformed into the space domain which gives
he contrast information. The final contrast is calculated dividing
ach channel in the space domain by the local luminance provided
y the low-pass channel as follows:

so(x, y) = iso(x, y)
i0(x, y)

, (4)

here cso(x, y) represents the local contrast for a given channel,
so(x, y) = iCSF(x, y) × Gso refers to the response of the Gabor filter
nd i0(x, y) = iCSF(x, y) × G0 is the low-pass response. Other contrast
alculation like global contrast or Lubin’s contrast (Lubin, 1993)
ave been proposed, though we finally adopted the local contrast

ollowing the results of Gallego (2006).

.1.6. Spatial masking
One of the last characteristics of the early stages of the HVS has to

o with the observed behaviour between neurons for exciting and
nhibiting their surrounding cells when a pronounced stimuli pass

hrough. This can be modeled as a masking effect where a given
ontrast difference is hardly perceived in regions with high local
ontrast, like object contours or textures, and more easily perceived
n regions where signals of low-frequency predominate. From

ig. 6. Example of Region of Interest extraction from images in Fig. 1. (a) Threshold bi
emoving small particles.
ross scales. (b) Filters in space domain: 4 orientations, 4 scales and low-pass filter.

psychophysical experiments (Daly, 1993), the visibility threshold
can be modeled following the Minkowski metric as:

tso(x, y) = [1 + [K1[K2|cso(x, y)|]˛]ˇ]1/ˇ, (5)

where K1 = 0.0153, K2 = 392.4980,  ̨ = 1 (for band-pass channels)
and  ̌ = 4. Note that ideally the threshold varies from 1 (visibility
is unchanged) to +∞ (no distortion can be perceived).

3.1.7. Objective Perceptual Contrast (OPC)
We named Objective Perceptual Contrast to the masked local

contrast which has been attenuated by the visibility threshold:

pso(x, y) = cso(x, y)
tso(x, y)

. (6)

This equation gives the modeled intensity of contrast which
will be finally perceived in a local region (with a given scale and
orientation). Because every pair of images that we want to com-
pare corresponds to the same view, the sum of their local contrast
across scales, orientations and spatial coordinates provides an over-
all energy measurement of perceived contrast and therefore image
quality.

OPC =
∑

pso(x, y). (7)

x,y,s,o

In this respect a contrast measure used for evaluating image
quality was  also proposed in Wang et al. (2004).  Although such
a measurement reveals which image of the same view has better

narization. (b) Closing operation for filling small holes. (c) Opening operation for
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ig. 7. Example of assessment of the 18th pair of (a) scanner; (b) microscopy imag
canned image, respectively; (g)–(i) channel decomposition of the microscopy imag

uality in terms of contrast, sharpness or contour preservation, it
s not able to provide an absolute significance of quality between
wo images.

.1.8. Region of Interest (ROI)
Some of the images evaluated present large background regions

hich are not relevant for diagnosis. Therefore they should not
nterfere with the perceptual quality. For estimating the ROI where

he metric should be computed, we adopted a simple and effective

ethod. Firstly, the image is binarized by taking the peak value
f the histogram as a threshold. This value corresponds closely to
he grey level of the background since it is the most predominant
) ROI; (d)–(f) luminance – Y, blue – Cb and red – Cr channel decomposition of the

value. Then two  consecutive closing and opening morphological
operations are computed with a mask of size 21 × 21 (González
and Wintz, 1987). The closing operation removes holes in the tis-
sue regions and the opening operation removes small particles in
background regions. The size of the mask was  adjusted empirically
depending on the original size of the captured images. Actually,
this method makes use of well-known strategies for such a particle
screening task. Although other strategies could be used, we  finally
adopted this method because it fulfilled our requirements. Finally,
the ROI is calculated for the luminance channel of the microscopy or

scanned images, the result was  similar, and applied to both colour
channels (red and blue). See an example in Fig. 6.
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ig. 8. Objective Perceptual Contrast (OPC) evaluated for 34 pairs of microscopy an

.2. OPC results

Fig. 8 shows an example of a pair of images captured by a scanner
nd a microscope. Fig. 7 presents the OPC output plots for the 34
xamined pairs. The measurement of perceptual contrast reveals
n evident superiority of the scanned images over the microscopy

mages (see Fig. 7). The number of scanner images with more con-
rast than the microscope images was 94%, 100% and 97% for Y, Cb
nd Cr, respectively. The ratio between the scanner OPC divided by
he microscope OPC, averaged for all the pairs, was  1.13, 1.34 and
ned images of the (a) luminance – Y, (b) blue – Cb and (c) red – Cr colour channels.

1.30 for Y, Cb and Cr, respectively, which means that the scanner
provides more contrast in general. Moreover, although there is not
any colour channel predominance, the luminance channel present
slightly less impairment compared to the colour channels. In any
case, because the three colour channels present similar ratios one
can argue that defocus responsible for the main impairment cause.

Although this impairments are measured quantitatively in terms
of perceptual contrast, the measurement does not reflect the real
significance in terms of visual discrepancies perceived by an
observer. To that end we will use the following quality metrics.
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Fig. 9. Cumulative Perceptual Blurring Detection (CPBD) evaluated for 34 pairs of microscopy and scanned images of the (a) luminance – Y, (b) blue – Cb and (c) red – Cr
c
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hannels.

. Quality evaluation through Cumulative Perceptual
lurring Detection (CPBD)

The CPBD quality metric measures the contrast of edge contours
o estimate the degree of blurriness present in images. First, the
mage is split in 64 × 64 blocks which are evaluated only if they

ave a significant number of edge pixels in it. Similarly to the notion
f luminance adaptation introduced before in Section 3.1.2, the
dge contrast is calculated following the psychophysical concept of
Just Noticeable Blur” (Ferzli and Karam, 2009) which models the
contrast Sensitivity against a given background luminance. Such
JNB works as a visibility threshold which is also related to the
notion of masking defined previously in Section 3.1.6. Then the
model estimates the probability of detecting blur in a certain area
as:
P(i) = 1 − exp

(
−
∣∣∣∣ w(i)

wJNB(i)

∣∣∣∣
ˇ
)

, (8)
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here i means the index of the edge, w(i) the width and wJNB(i) the
isibility threshold. The probabilities are finally grouped together
n a single value for scoring the whole image as:

blur = 1 −
∏

i
(1 − P(i)). (9)

.1. CPBD results

In Fig. 9 the CPBD output is plotted for the 34 examined pairs. As
t was explained in Section 3.1.1 the colour image is decomposed
imilarly to YCbCr colour channels. The quality metric reveals again
n evident superiority of the scanned images over the microscopy
nes. Now the number of scanner images with more contrast than
he microscope images was 100%, 88% and 82% for Y, Cb and Cr,
espectively, and the ratios between scanner and microscope are
.05, 1.57 and 1.24 for Y, Cb and Cr, respectively. On the other
and, the luminance channel of the microscope images is now more
enalized by the metric than what we found in OPC. Nonetheless,
his reinforces the idea that defocus is still the main responsible for
mpairment. Although the slight discrepancy between both colour
hannels, Cb and Cr, evidences some colour alterations due to the
mage capture process. Such clues given by objective evaluation will
e also corroborated afterwards through subjective experiments.

. Quality evaluation through subjective psychophysical
ests

We completed the quality assessment with subjective quality
etrics because they can give a complementary analysis of the

lobal perceived image quality. In this study 6 experts on the diag-
osis of this type of tissues from the Hospital Universitario General
e Ciudad Real (Spain) were subject to psychophysical tests. For
uch purpose we followed the recommendation ITU-R (ITU, 2000)
here the main guidelines are: (1) the experts are exposed to an

utomated test consisting of a random series of the same 34 pairs
f images introduced in the previous section. (2) The pairs are dis-
layed twice and sequentially, ABAB (they are never displayed at
he same time), in an interval of 10 s each image with a gap of 2 s
ith a grey level luminance between each one. (3) At the end of each
air displaying there exists a final period of time of 10 s dedicated
o scoring from 0 to 5, in correspondence with PQI, representing
ow much similar are the observed pair of images. We  called this
easure the Mean Opinion Score (MOS) in accordance with ITU-R.

4) The order of A and B pair is also random for avoiding a possi-
le bias. This means that A sometimes corresponds to the scanned

mage and sometimes corresponds to microscopy image. (5) The
rst case is taken as an example, where appropriate instructions
re given, and the second case is avoided in order to stabilize the
coring.

We consider that a preference among the pair of images exists if
t least 4 experts consider the same image as better, and only their
cores are taken into account. Consequently if only three experts
refer one image and the other three prefer the other one, then
o single image is considered better than the other. For 66% of the
ases the experts considered that the scanned images had better
uality and scored a MOS  difference of 2.75 averaged value. For
4% of the cases the microscope images were preferred with a 2.57
OS  score, and the remaining 20% percentage both types of images
ere equally preferred. This means that the experts consider that

enerally the scanner provides an overall better image quality. Fur-
hermore in the cases where microscope provided better images,

he scanned images were a bit closer than the opposite cases.

The experts were also asked for the main causes of discrepancies
etween focusing, contrast, stain, colour, brightness, overexposure
nd sharpness. When the scanner was preferred, the main cause
43 (2012) 334–343

addressed was  focusing with 76% of the cases and colour discrepan-
cies for the remaining 24%. Stain was also addressed as a third cause
for 22% of the cases. When microscope was  preferred then focus-
ing was  the main cause for 100% of the cases, colour and stain the
second cause and with contrast and sharpness the third cause. This
results places defocus as the main addressed cause of impairment
of the image quality.

Note that no correlation between the objective metric like CPBD
and psychophysical scoring like MOS  was calculated since the data
set does not present a wide range of degradations to accommodate a
logistic function. In any case, both assessments released conclusive
results on their own.

6. Conclusions

The aim of this paper was  to carry out a quantitative quality
assessment of biopsy and cytology images provided by two differ-
ent devices for clinical diagnosis used nowadays: microscope and
scanner. To that end we decided to apply three different strategies.
First, an Objective Perceptual Contrast measure was used for assess-
ing the magnitude of the possible impairments, which revealed
blurring as the main problem with no significant colour distortions
in microscopy images. Second, a non-reference quality image based
on blur estimation of edge areas from a top-down architecture cor-
roborated the previous results. Finally, psychophysical tests were
performed with expert observers, which confirmed again from a
global perception point of view that in general the scanner pro-
vides slightly better image quality, addressing focusing as the main
problem and colour distortions as the second. However, for some
of the evaluated cases, the microscope was  able to provide better
in-focus images, which encourages us to develop new strategies to
optimize and automate the focusing process as the next research
line.

Since motorized microscopes are more flexible and customiz-
able than scanners, it is possible to improve focusing and contrast,
and therefore image quality. Moreover, motorized microscopes are
more suitable for applications where other objective lenses differ-
ent than 20× and 40× are required; as well as for fluorescence
field applications. In summary, in this paper it has been shown that
the image quality provided by scanners is slightly better than in
motorized microscopes (when digitizing at 40× in bright field). In
any case, the image quality of both devices is suitable for clinical,
educational and research purposes.
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