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Abstract

Video understanding has attracted significant research attention in recent years,
motivated by interest in video surveillance, rich media retrieval and vision-based
gesture interfaces. Typical methods focus on analyzing both the appearance and
motion of objects in video. However, the apparent motion induced by a moving
camera can dominate the observed motion, requiring sophisticated methods for
compensating for camera motion without a priori knowledge of scene characteris-
tics. This paper introduces two new methods for global motion compensation that
are both significantly faster and more accurate than state of the art approaches.
The first employs RANSAC to robustly estimate global scene motion even when
the scene contains significant object motion. Unlike typical RANSAC-based mo-
tion estimation work, we apply RANSAC not to the motion of tracked features but
rather to a number of segments of image projections. The key insight of the second
method involves reliably classifying salient points into foreground and background,
based upon the entropy of a motion inconsistency measure. Extensive experiments
on established datasets demonstrate that the second approach is able to remove
camera-based observed motion almost completely while still preserving foreground
motion.
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1 Introduction

Advances in computer vision have made it possible to tackle previously dif-
ficult problems such as action recognition in video. The implicit objective is
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to classify human actions by analyzing the motion of body parts. Applica-
tions include automatic video annotation (particularly for sports and news),
human-computer interaction, games, etc. The recent widespread interest in
video surveillance has also brought increased attention to the action recogni-
tion problem. Most work in action recognition deals with sequences acquired
by stationary cameras with fixed viewpoints (see [1]). Due to camera motion,
however, the trajectories of the body parts contain not only the motion of the
performing actor but also the motion of the camera. This paper deals with
camera motion compensation in the context of action recognition.

Global (camera) motion is typically modeled by either a full projective homog-
raphy or an affine homography, assuming distant views and planar scenes.
Motion compensation methods may be divided into feature-based or direct
(featureless) [2]. Feature-based methods are based on a set of salient features
whose motion is tracked from frame to frame, whereas direct methods attempt
to estimate global motion directly from image intensities.

Direct or image-based methods rely on a direct transformation of the image
grid and minimize some image difference criterion [3, 4, 5]. However, since the
homography parameters are related to the image intensities in a highly non-
linear way, some direct methods use complex and computationally intensive
optimization algorithms. Feature-based methods use tracked salient points to
estimate the homography or affine transformation describing frame-to-frame
motion [6, 7, 8]. Given a set of point correspondences, a Least-Squares (LS)
estimate of the homography parameters can be obtained. RANSAC [9] is often
used instead of LS to obtain more robust estimates when the point correspon-
dences are noisy.

In the context of an action recognition application, Zhu et al. [10] remove cam-
era motion by continuously tracking the object of interest (a tennis player).
A similar approach is used in Papagiotakis et al. [11] for recognizing actions
of athletes, exploiting camera motion as an additional feature for recognition
of the action. Since the motion of salient points is often used as the main
descriptor for modeling actions and efficient trackers are readily available,
feature-based methods have been more widely used in the context of the ac-
tion recognition problem. In Mikolajczyk and Uemura [12], for example, salient
point correspondences are used along with RANSAC for removing global mo-
tion prior to action recognition. In Hanheide et al. [13] a wearable camera
system that recognizes actions is described. In that work tracked patches are
used to estimate an affine homography representing camera motion, using the
Least Median of Squares (LMEDS) procedure. In Kong et al. [14] the Lucas-
Kanade tracker [15] is used to track features in soccer videos. Camera motion
is modeled with an affine homography, estimated with a RANSAC-like al-
gorithm and then removed from the images, after which group actions are
recognized using Latent-Dynamic Conditional Random Fields. Of particular
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interest is the global motion compensation described in Uemura et al. [16],
in which SIFT features and the Lucas-Kanade tracker are used. Each input
frame is segmented (using color MeanShift) and the homography estimated
(using RANSAC) from the points falling inside each of the resulting segments.
Starting from the dominant one (i.e., the segment with the largest number of
inliers) segments are iteratively merged based on the number of inliers shared
by the homographies. The best 3 segments are selected, the other remaining
segments are simply merged with these three. This procedure partitions the
image into (up to) three segments (i.e., dominant planes). Within each segment
the motion of the tracked points is corrected using the homography associated
to the segment. The method was shown to achieve a significant reduction of
motion magnitude on background zones, which prompted us to select it as a
strong baseline in this paper against which to compare our results.

Note that in our context of human action recognition we are not requiring
‘video stabilization’, a different but related problem. The objective of video
stabilization is to remove undesirable camera motion effects so that only inten-
tional motion effects are retained [17]. In our case, however, we are interested
in removing intentional camera motion too. The primary benefit of video sta-
bilization is to improve video quality by recording a stable sequence, whereas
in our case we explicitly aim at removing camera motion from human motion.
Although a global motion estimation step is common and some results can be
used in both problems, note for example that the most popular motion estima-
tion technique in video stabilization, i.e., the Block Matching Algorithm [18],
does not take advantage of the salient point tracking commonly used in action
recognition applications, while having itself a relatively high computational
cost. 1

The main contribution of this paper is a novel method for motion compensa-
tion within the context of the action recognition problem. Camera motion is
modeled as a 2D translation, which allows us to use a fast image projection-
based estimation procedure performed within a RANSAC framework. Then,
an entropy-based method is proposed to determine which tracked features
are moving in a manner consistent with the dominant motion. These ones
are assumed to be background and their relative motion is zeroed out; the re-
maining ones are assumed to be foreground. Section 2 describes the underlying
motivation and the method itself. Section 3 shows experiments and finally, in
Section 4 the main conclusions are drawn.

1 The Block Matching Algorithm for motion estimation divides the image into non
overlapping regions, typically squares. For each square, motion estimation is done
by identifying another square (through correlation, for example) that best matches
the first one. The displacement is provided as a pair (x,y) of horizontal and vertical
displacement values. From the set of local displacements a global displacement is
then estimated by some technique.
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2 Motivation and Proposed Method

The planar homography accounts for the perspective effects of camera transla-
tion and rotation, assuming a planar scene. There are cases, however, in which
there is no camera rotation, such as in television broadcasts, or with shoulder-
mounted cameras. As an example, consider the YouTube Action Dataset[19], a
challenging set of YouTube videos used in the action recognition community.
These videos contain large variations in camera motion, object appearance
and pose, object scale, viewpoint, cluttered background and illumination con-
ditions. In this dataset, the variance of the homography matrix is:

var(H) =


0.3358 0.0040 39.9279

0.0016 0.3352 20.4549

0.0000 0.0000 0.3381

 ,

Fig. 1. Variance of the homography matrix calculated between each pair of consecu-
tive frames of the YouTube Action Dataset (1600 videos, 214389 frames used). The
homography matrix is estimated from Harris corners registered using correlation.

which shows that the largest variations are in 2D translation.

When camera motion is modeled as 2D pixel translations, simpler and faster
techniques can be used to tackle the motion compensation problem. The work
of [20, 21] on video stabilization, for example, uses integral projections of the
intensity image to infer a 2D translation. The vertical and horizontal projec-
tions between frames i and i − 1 are registered (through cross-correlation or
another registration technique), thus producing vertical and horizontal dis-
placement estimations. This method proved very fast, in [20] it was used for
real-time obstacle detection on high-speed trains. Image projections were also
used for global motion estimation in [22] and [23].

In the method proposed here a number of FAST features [24] are extracted
from the first frame and tracked with the Lucas-Kanade pyramidal algorithm.
Then the vertical and horizontal image projections are computed, from which
a global motion estimate can be obtained through cross-correlation, see illus-
trative Figure 2. Global motion estimation from image projections, however
can suffer from the effect of objects or individuals moving in the image. Be-
sides, image projections depend on textures. Some zones in the image may
be less textured than others, thus biasing the estimated global motion toward
zero.

In order to make the displacement estimation more robust, a RANSAC-like
approach is adopted. Projections are actually computed from vertical and hori-
zontal bands of the image. Using the projections of each vertical and horizontal
band a displacement can be computed (using cross-correlation between frames
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i and i− 1), see illustrative Figure 3. Among the computed displacements we
assume that there are inliers (values in accordance with the global image
displacement) and outliers. The outliers will be mostly caused by objects or
individuals with motion different than the background motion. We therefore
use a RANSAC algorithm to obtain a robust estimate of the horizontal and
vertical global displacement. The procedure is shown in Figure 4.

Fig. 2. Vertical projections can be used to get a global horizontal displacement
estimate.

Segments are fixed-size continuous sections of the 1D signal, so the selection
of segment is actually the random selection of a starting point. The threshold
used to decide on inliers as well as LowerThreshold must be fixed beforehand
(we used a value of 0.25 for the first one and LowerThreshold = 0.38. These
thresholds were used with all the datasets in the experiments).

Note that, as opposed to other global motion estimation work that uses
RANSAC, here RANSAC is not applied to the motion of tracked features,
but to a number of segments of the image projections. This is a potentially
faster approach, since the number of tracked points is typically large, whereas
with this approach the worst case depends on the chosen L. Moreover, note
that each iteration of the loop can be run in parallel. The length m of the
segments should be fixed to a submultiple of the image width or height.

Note that the performance of this method will depend on the number of out-
liers, which in turn depends on the size of the individuals (or objects with
independent motion) in the image. If individuals appear too large the estima-
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Fig. 3. One horizontal displacement estimate can be obtained from each vertical
band of the image.

tion will fail. To avoid this, we impose an additional threshold:

L−MaxInliers

L
≥ UpperThreshold (1)

if the threshold is exceeded then a non-RANSAC projection-based estimation
is used instead.

Let us call (dispx, dispy) the estimated global motion. Motion compensation is
carried out by subtracting, in each frame, the vector (dispx, dispy) from each
tracked point. The method described up to this point is later called ‘Proposed
method 1’ in the experiments.

A second method is also proposed that uses as input global motion estimates
obtained with method 1. This second method keeps a history of ‘motion in-
consistency’ for each tracked point. Motion inconsistency basically measures
the departure of each tracked point’s motion from the global motion. Then
an entropy-based threshold is used on this motion inconsistency to separate
tracked points between background and foreground points. The following para-
graphs describe this second method in detail.

A ‘motion inconsistency’ history (MIH) is maintained for each tracked point
and for the last K frames. The motion inconsistency of a tracked point i at
time t, P t

i , is the difference between the estimated current global displacement
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Input:
A = vertical (or horizontal) projection of frame t
B = vertical (or horizontal) projection of frame t− 1

MaxInliers = 0
l = 1
while l < MaxIterations do

Choose a segment i of input signals, randomly
Disp=Register Signals By Cross Correlation(Ai,Bi)
NumInliers = 0
for m = 1 to L do

Choose a segment j of input signals, randomly
Ej=Align Signals And Compute SSD Error(Aj,Bj,Disp)
if Ej < Threshold then

NumInliers = NumInliers+ 1
end

end
if NumInliers > MaxInliers then

MaxInliers = Inliers
BestDisp = Disp

end

if
(
L−Inliers

L

)
<= LowerThreshold then

break;
end
l = l + 1

end
return BestDisp

Fig. 4. Proposed algorithm for RANSAC of projections.

Dt = (dispx, dispy) and the actual displacement of the point between frames
t−1 and t. The motion inconsistency history of a tracked point is thus defined
as in Equation 2. Points with larger accumulated motion inconsistency are
those corresponding to individuals moving with independent motion, whereas
those with smaller inconsistency correspond mostly to background points (that
are subject to camera motion only). Thus, the MIH value for a given tracked
point integrates the degree to which the motion of that point is consistent
with the global observed motion of the background:

MIH(P t
i ) =

K∑
k=0

∣∣∣∣∣∣ ||P t−k
i − P t−k−1

i || −Dt−k
∣∣∣∣∣∣ i = 1, . . . , n. (2)

From the accumulated MIH we now attempt to separate background and fore-
ground points. That is, we would like to have a threshold of accumulated MIH
values that separate background points and foreground points. Such separat-
ing thresholds cannot be obtained from MIH values alone, for typically they
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form a continuum (i.e., without definite clusters). Thus, we must consider the
spatial position of the points. Foreground points usually belong to individuals
in the image with independent motion. These points will tend to be spatially
clustered in the image. We therefore consider the entropy of the positions of
the points. Entropy is a dispersion measure similar to variance. As opposed
to variance, which measures dispersion only around the sample mean, entropy
measures dispersion between samples. Here it is used to detect ‘lumps’ of
tracked points. Actually, we compute the entropy only in the x dimension. 2

Entropy estimation is not straightforward. The simplest approach of histogram-
based density estimation requires careful tuning of parameters such as bin
sizes. We estimate entropy with a method based on sample spacings [25]. Let
us assume that x1, . . . , xn is a sample of i.i.d. real valued random variables. Let
x1 ≤ x2 ≤ . . . ≤ xn be the corresponding order statistics. Then xi+m − xi is
called a spacing of order m, or m-spacing (1 = i < i+m = n). The m-spacing
estimate of entropy, for fixed m, is defined as ([25]):

H =
1

n

n−m∑
i=1

ln
(
n

m
(xi+m − xi)

)
− ψ(m) + lnm (3)

where ψ is the digamma function. We used m = 1 in our experiments. In
practice we computed Equation 3 by first ordering the x coordinates of the
points in ascending order and then computing the mean of (the logarithm of)
differences between consecutive elements.

In each frame, we ordered the tracked points by increasing MIH value and,
for each point, computed the entropy of the set of tracked points with equal
or higher MIH value. That is, for n points we have a set of indices:

i = 1, . . . , n s.t ∀i ≥ 2 MIH(P t
i ) ≥ MIH(P t

i−1) (4)

and

E(i) = Entropy
(
{P t

j}
)

j = i, .., n (5)

If we represent these two variables in a figure we obtain a pattern like that
shown in Figure 5.

2 Note that in order to calculate entropy the set of x coordinates of the tracked
points must be first normalized to zero mean and unit variance (this has the effect
of compensating for the variance, which measures sample dispersion with respect
to the mean). Had we opted for computing the (x, y) (2D) entropy, a ‘whitening’
normalization would then be needed, which could be achieved using PCA. Here,
the x dimension suffices because we assume that individuals appear on horizontal
surfaces.
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Fig. 5. Entropy of tracked points with equal or higher MIH value. A valley-pattern
appears on the left, see the text.

Since points with a low MIH correspond to the background, points on the
right side of the figure are mainly from the foreground, typically associated
with one or more individuals with independent motion. It can be observed in
the Figure that there is a valley. Going from right to left, on the right half of
the valley more and more foreground points are considered (which decreases
the average dispersion of the set, thus decreasing the entropy). Then, the
situation reverses, as more and more background points are considered the
relative separation between points increases, thus increasing the entropy. The
position of the rightmost valley can be therefore used to get a MIH threshold,
with which we can separate background and foreground points. In practice, a
good value for the threshold must be set around the bottom of the valley. If we
set the threshold too low background points will be considered as foreground.
If we set it too high foreground points will be considered as background 3 . The
entropy signal is first smoothed with a running average of width=15 samples,
see Figure 6.

Once we can separate background from foreground points we correct their
motion as follows. For background points we directly set their motion to zero
(i.e., since we now know that they are background points they must not suffer
displacement). For foreground points we subtract the estimated global dis-
placement (dispx, dispy) obtained with the Method 1 above.

The method described up to this point is later called ‘Proposed Method 2’ in
the experiments. Although in Method 2 we have used the so-called Method 1
for estimating global motion, note that it is possible to use any other global

3 Note that the threshold is actually one of the tracked points (once they have
been ordered by increasing MIH). In our implementation we use a peak finding
algorithm for locating both the valley and the rightmost peak of Figure 5. Let those
two points be ia and ib. The index of the cut-off tracked point, ic, is always between
those two points: at configuration time we adjust an α ∈ [0, .., 1] and then we make
ic = round(α · ia + (1− α) · ib)
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Fig. 6. Actual entropy values for frame 40 of one of the experiment sequences (see
below). Left: raw signal, Right: Smoothed signal with the obtained threshold.

motion estimation methods, including those based on affine and full projec-
tive homographies. Figure 7 summarizes the main steps of the two proposed
methods.

3 Experiments

In order to illustrate the steps of the methods proposed we first show an
example of the effect of the RANSAC of projections. In Figure 8 we show
a synthetic video in which two individuals enter the scene from the right.
The estimated horizontal displacement without using RANSAC (i.e., using
only the cross-correlation between the projections of consecutive frames) is
negatively affected by the presence of the individuals. The RANSAC-version
gives a more robust estimate.

In Figure 9 we show the tracked points and associated entropies, for frame 50
of the same video sequence.

In order to assess the performance of the proposed methods, experiments were
also carried out with publicly available video datasets, with both synthetic and
real camera motion. Table 1 summarizes the video datasets used. A total of
167 videos were used in the experiments.

The KTH action recognition dataset [28], widely used in the action recognition
community, was not used here since the backgrounds are mostly static and
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Fig. 7. Steps in the two proposed algorithms.

uniform.

We compared the two proposed methods with Uemura et al.’s homography-
estimation based method [16], discussed in Section 1. In that work, perfor-
mance is measured as the average magnitude of motion for foreground (i.e.,
individuals) and background regions before and after motion compensation,
assuming that a good performance maximizes the first quantity and mini-
mizes the second. We argue that the first quantity is inappropriate, since the
magnitude of motion in foreground regions can be large after correction even
when we apply a bad correction. Therefore, for synthetic camera motion ex-
periments we define a new measure: Error Per Tracked Point (EPTP). For
each frame t, the EPTP is calculated as follows:

EPTP =
Eb + Ef

nb + nf

(6)
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Fig. 8. Effect of RANSAC of projections in the estimation of horizontal global mo-
tion. The camera is static throughout the whole sequence, only the individuals are
moving from right to left. Bottom figures, Left: estimation using only cross-correla-
tion between the projections of consecutive frames, Right: RANSAC of projections.

(Synthetic video created with the Moviestorm
TM

real-time 3D movie creation soft-
ware).

with nb and nf being the number of background and foreground tracked points,
respectively. Eb is the compensation error for the background points pi:

Eb =
nb∑
i=1

||∆pi −∆synthetic|| (7)

where ∆pi refers to the estimated camera-motion-related 2D displacement for
point pi between frames t and t−1. ∆synthetic is the synthetic 2D displacement
that was applied between those two frames. Ideally, the motion compensation
algorithm would estimate the synthetic displacement correctly, thus making
Eb = 0. Ef is defined analogously for foreground points.
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Fig. 9. Top left: frame 50 of the video, Top right: Entropy as a function of the tracked
point considered, showing the point of the estimated MIH threshold. Bottom left:
x-coordinate of each tracked point vs its MIH value, Bottom right: 3D representation
of point coordinates vs MIH value. Points estimated as background are shown as
circles. Points estimated as foreground as shown as crosses.

Table 1
Video datasets used in the experiments.

Dataset Description Camera Ref.

motion

Weizmann ‘Robust’ set: people walking in various difficult scenarios Synthetic [26]

in front of different non-uniform backgrounds.

‘Classification’ set: people performing 10 natural actions such

as run, walk, skip, bend, etc., with a more uniform background

MultiKTH 4 sequences which show 1 indoor and 3 outdoor scenes Yes [16]

with moving foreground people, complex background, multiple

dominant planes and camera motion (a fifth sequence from the

original set was not used because it did not show people).

UCF Sports Actions collected from various sports which are Yes [27]

Action dataset typically featured on broadcast television channels

YouTube YouTube videos with large variations in camera motion, Yes [19]

Action object appearance and pose, object scale, viewpoint,

dataset cluttered background and illumination conditions

For real camera motion experiments, the actual camera motion in each frame
is not available. Thus, for that case we define Ef = 0 and Eb as the residual
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motion after compensation:

Eb =
nb∑
i=1

||(pi(t)− pi(t− 1))−∆pi|| (8)

Again, the ideal motion compensation algorithm would estimate the camera
motion correctly, which would make Eb = 0.

The division into background and foreground points is obtained by considering
the ROI’s of the individuals present in the image (the ground-truth of the video
datasets).

The proposed methods were also compared with a simple RANSAC-based
affine motion estimator and with the method described in [29], in which the
authors also used the Weizmann dataset. The latter method is based on com-
puting optical flow vectors from consecutive frames and then applying a local
median filter. The resulting motion vectors are then used for compensation. In
our implementation we used a size of 25 for the median filter neighborhood,
the same as used in [29].

3.1 Synthetic camera motion

Camera motion was simulated by the following procedure. First, the frame is
zoomed in 20%, then a random 2D displacement is applied, and the result-
ing image is cropped to the original size. This avoids black borders after the
displacement step. The algorithm chooses a random displacement point and
successively moves the image toward that point. Then it chooses another point
and the process is repeated. The algorithm has two parameters: speed s (de-
fined as the number of steps between any two random points) and maximum
coordinate value d of chosen points from the (0,0) position. The experiments
shown here were carried out using s = 7 and d = ±12.

Uemura et al. [16] used Meanshift to segment the images. We used the same
segmentation parameter values as those used in that work for the MultiKTH
videos (which they also used in their experiments). In order to make the
comparison fair, for other datasets we manually adjusted the parameters to
get a better segmentation.

The Weizmann dataset is actually divided into two sets of videos. The ‘robust’
set (10 videos) shows people walking in various difficult scenarios in front of
different non-uniform backgrounds, see Figure 10-left. The ‘classification’ set
shows people performing 10 natural actions such as run, walk, skip, bend,
etc., with a more uniform background, see Figure 10-right. Table 2 shows

14



the obtained errors for the Weizmann robust dataset. ‘Proj+XCorr’ refers to
the use of image projections and cross-correlation to get estimates of global
motion, i.e., the method of [20]. Figure 11 shows the result of an ANOVA test
performed with the 5 methods considered, considering all the videos of the
set. It can be shown that Method 1 is not significantly different from Uemura
et al.’s, although Method 2 achieves a significant reduction in EPTP, mainly
due to a large reduction in background error.

Fig. 10. Left: sample frame from a Weizmann ‘robust’ set video. Right: sample frame
from a Weizmann ‘classification’ set video.
Table 2
Results for the Weizmann ‘robust’ set.

Method EPTP Average FG point Average BG point Time

error (= Ef/nf ) error (= Eb/nb) (ms)

No compensation 3.368 7.17 1.83 1.2

Proj+XCorr 2.612 7.20 0.73 2.0

Simple RANSAC 2.416 7.13 0.46 75.3

Uemura et al.’s 2.431 7.21 0.34 5814.9

Oikonomopoulos et al.’s 3.187 7.54 1.46 19.2

Proposed Method 1 2.339 7.13 0.35 3.6

Proposed Method 2 2.218 7.63 0.03 91.1

First, note that the results for Oikonomopoulos et al.’s method are relatively
poor. We hypothesize that this is due to border effects in the local median
filtering (even though we replicated border pixels in our implementation).

The average processing times (per frame) are significantly higher for the
method of Uemura et al. mainly because of the MeanShift segmentation (which
for this experiment took 98.7% of its processing time). Note that the Method 2
proposed here also performs a segmentation of background and foreground
points, although it is much faster (it is a segmentation of points, not of the
image itself, and the segmentation itself is accomplished by a relatively simple
entropy-based threshold). The code developed for the experiments was not ex-
plicitly optimized. 4 All the experiments were completed on a Intel R© CoreTM2
CPU at 3Ghz.

4 Intel’s Integrated Performance Primitives
TM

were used. Input frames were first
converted to 160x120.
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Fig. 11. Results of the one-way ANOVA followed by a multiple comparison (us-
ing the Tukey-Kramer method), performed with the 7 methods considered, on the
Weizmann robust set.

Table 3 and Figure 12 show the results for the Weizmann classification set.

Table 3
Results for the Weizmann ‘classification’ set.

Method EPTP Average FG point Average BG point Time

error (= Ef/nf ) error (= Eb/nb) (ms)

No compensation 2.976 7.18 2.16 0.5

Proj+XCorr 2.267 7.26 1.29 1.3

Simple RANSAC 2.002 7.13 1.00 40.8

Uemura et al.’s 2.033 7.23 1.01 3317.8

Oikonomopoulos et al.’s 2.789 7.37 1.91 18.7

Proposed Method 1 1.982 7.13 0.98 2.8

Proposed Method 2 1.334 7.44 0.16 21.0

3.2 Real camera motion

This subsection describes experiments with real camera motion videos taken
of three different public datasets. The MultiKTH dataset, which was also used
in [16], contains 4 sequences which show 1 indoor and 3 outdoor scenes with
moving foreground people, complex background, multiple dominant planes
and camera motion (a fifth sequence from the original dataset was not used
because it did not show people). Since in our experimental implementation
FAST points are extracted only once at the beginning, we split the videos into a
number of equal parts and run the implementation for each part independently.
Table 4 and Figure 13 show the results.

Experiments were also carried out using a subset of the UCF Sports Action
dataset [27], which consists of a set of actions collected from various sports
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Fig. 12. Results of the one-way ANOVA followed by a multiple comparison, per-
formed with the 5 methods considered, on the Weizmann classification set. The
EPTP results of Method 2 for this set are statistically different from those of the
other 6 methods.

Table 4
Results for the MultiKTH dataset.

Method EPTP Time (ms)

No compensation 0.018 0.3

Proj+XCorr 0.017 0.9

Simple RANSAC 0.023 35.0

Uemura et al.’s 0.026 1157.5

Oikonomopoulos et al.’s 0.016 11.9

Proposed Method 1 0.016 2.9

Proposed Method 2 0.007 15.4

which are typically featured on broadcast television channels. Only videos with
camera motion were selected (one video from each section of sets: Golf-Swing-
Front, Kicking-Front, Kicking-Side, Riding-Horse, Run-Side, SkateBoarding-
Front, Swing-Bench, Swing-SideAngle and Walk-Front, see Figure 14). As ex-
plained above, in this case the EPTP is equal to the average magnitude of
motion for background points (after global motion subtraction). Due to ex-
treme differences between videos, the results are given here independently for
each video, see EPTP’s in Table 5. Figure 15 shows the corresponding ANOVA
tests.

The results on this dataset are in accordance with the results obtained with
synthetic camera motion both in accuracy and speed. Method 2 is the best in
terms of EPTP. On the other hand, as opposed to the results with synthetic
motion, here Uemura et al.’s method could not improve over ‘No compensa-
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Fig. 13. Results of the one-way ANOVA followed by a multiple comparison, per-
formed with the 7 methods considered, on the MultiKTH dataset.

tion’. We hypothesize that this is due to the fact that most of the videos have
a relatively uniform green background (the sports field). This affects nega-
tively to the method since it is affected by the larger tracking errors. Video
Swing-SideAngle, for example, does not have such uniform background and
there Uemura et al.’s performed better.

Uemura et al.’s method bad performance can be also attributed to the fact that
it is strongly dependent on the segmentation parameters. In the experiments,
we used the same parameters for all the videos in the dataset. Note that in
this dataset the videos are very different from each other, which was not the
case with the Weizmann dataset.

Note also that, as opposed to the case in previous databases, here Method 1
does not improve much over ‘Proj+XCorr’. This is due to the fact that in-
dividuals in the images have a much larger size than in previous databases,
which translates into more outliers.

Table 5
Results for the UCF set.

Method EPTP Time (ms)

No compensation 0.130 0.6

Proj+XCorr 0.123 1.2

Simple RANSAC 0.167 28.5

Uemura et al.’s 0.436 1954.9

Oikonomopoulos et al.’s 0.127 17.9

Proposed Method 1 0.121 6.6

Proposed Method 2 0.057 21.3
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Fig. 14. Sample frames for UCF videos. Top to bottom, left to right:
Golf-Swing-Front, Kicking-Front, Kicking-Side, Riding-Horse, Run-Side, Skate-
Boarding-Front, Swing-Bench, Swing-SideAngle, Walk-Front.

Fig. 15. Results of the one-way ANOVA followed by a multiple comparison, per-
formed with the 7 methods considered, on the UCF set.

Finally, experiments were also carried out using videos from the already men-
tioned YouTube Action Dataset[19], a challenging set of YouTube videos used
in the action recognition community. These videos contain large variations
in camera motion, object appearance and pose, object scale, viewpoint, clut-
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tered background and illumination conditions. 31 randomly-selected videos
were used, including actions like walking, tennis swing, volleyball spiking,
basketball shooting, horse riding, trampoline jumping, soccer juggling, diving
and biking. Table 6 and Figure 16 show the results on this dataset.

Table 6
Results for the YouTube set.

Method EPTP Time (ms)

No compensation 0.055 0.4

Proj+XCorr 0.046 0.8

Simple RANSAC 0.049 22.9

Uemura et al.’s 0.059 1187.7

Oikonomopoulos et al.’s 0.054 13.8

Proposed Method 1 0.045 3.7

Proposed Method 2 0.027 15.9

Fig. 16. Results of the one-way ANOVA followed by a multiple comparison, per-
formed with the 7 methods considered, on the YouTube set.

Figures 17 to 22 show how the proposed Method 2 can remove real camera
motion.

Since the evolution of modern hardware places more and more importance
on exploiting parallelism, here we make explicit the possibilities of the algo-
rithms introduced. The steps than can be parallelized are: a) the Lucas-Kanade
tracker, for which parallel implementations already exist, b) the computation
of image projections (slices of the image can be allocated to different proces-
sors), c) the RANSAC of image projections and d) the computation of MIH
values of tracked points, which can be shared among different processors.
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Fig. 17. Salient point trajectories for 3 (non-consecutive) frames of video
Swing-SideAngle from UCF dataset (tracks are shown as white lines connecting
the last K=30 point positions after global motion correction). Top-row: Original
frames, Second row: no camera motion compensation, note the significant back-
ground motion when the camera follows the swings of the individual on the high
bar, Third row: result using Method 1, Bottom row: result using Method 2. Note
that there are some strokes that represent tracking errors.

4 Conclusions

The human action recognition problem has attracted much interest in the
last years. The implicit objective is to classify human actions by analyzing
the motion of body parts. Due to camera motion, however, the trajectories of
these parts contain not only the motion of the individual but also the motion
of the camera. Thus, camera motion must be first compensated for. In this
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Fig. 18. Salient point trajectories for 3 (non-consecutive) frames of video Skate-
boarding-Front from UCF dataset.

context, this paper makes two contributions. First, it introduces RANSAC in
the estimation of global motion using image projections. The method proposed
is shown to improve the estimation when the area of the image occupied by
the individuals is not too large. Second, a method is proposed for segmenting
salient points into background and foreground points. The method is based
on thresholding the entropy of a motion inconsistency measure. Experiments
show that this second method is able to remove background (camera) motion
almost completely, while still retaining the useful foreground motion. Besides,
the proposed method’s processing time compares well with other approaches
and is low enough to be useful for real-time applications.

Future work shall explore the option of using the FG/BG point segmentation
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Fig. 19. Salient point trajectories for 3 (non-consecutive) frames of video Soccer-Jug-
gle from Youtube dataset.

as a feedback for improving the global motion estimation step. Zones of the
image previously estimated as foreground would be given less importance in
the global motion estimation step. The subsequent more robust global motion
estimations would produce a better MIH, and this in turn a better FG/BG
point segmentation.
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